A supervised manifold learning method

نویسندگان

  • Zuojin Li
  • Weiren Shi
  • Xin Shi
  • Zhi Zhong
چکیده

The Locally Linear Embedding (LLE) algorithm is an unsupervised nonlinear dimensionality-reduction method, which reports a low recognition rate in classification because it gives no consideration to the label information of sample distribution. In this paper, a classification method of supervised LLE (SLLE) based on Linear Discriminant Analysis (LDA) is proposed. First, samples are classified according to their label values, and low dimensional features of intraclass data are expressed through LLE manifold learning. Then, the base vectors in Fisher subspace of the low dimensional features are generated through LDA learning. This method increases inter-class variation, and decreases the intra-class variation when samples are projected to the Fisher subspace. Hence, the samples of different labels can be recognized, and the recognition rate and robustness of the LLE learning are improved. Experiments on handwritten digit recognition show that the proposed method is featuring high recognition rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره

In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised...

متن کامل

ManifoldBoost: Stagewise Function Approximation for Fully-, Semi- and Un-supervised Learning

We introduce a boosting framework to solve a classification problem with added manifold and ambient regularization costs. It allows for a natural extension of boosting into both semisupervised problems and unsupervised problems. The augmented cost is minimized in a greedy, stagewise functional minimization procedure as in GradientBoost. Our method provides insights into generalization issues in...

متن کامل

Large-Scale Sparsified Manifold Regularization

Semi-supervised learning is more powerful than supervised learning by using both labeled and unlabeled data. In particular, the manifold regularization framework, together with kernel methods, leads to the Laplacian SVM (LapSVM) that has demonstrated state-of-the-art performance. However, the LapSVM solution typically involves kernel expansions of all the labeled and unlabeled examples, and is ...

متن کامل

Manifold Regularization for SIR with Rate Root-n Convergence

In this paper, we study the manifold regularization for the Sliced Inverse Regression (SIR). The manifold regularization improves the standard SIR in two aspects: 1) it encodes the local geometry for SIR and 2) it enables SIR to deal with transductive and semi-supervised learning problems. We prove that the proposed graph Laplacian based regularization is convergent at rate root-n. The projecti...

متن کامل

Semi-Supervised Dimensionality Reduction of Hyperspectral Image Based on Sparse Multi-Manifold Learning

In this paper, we proposed a new semi-supervised multi-manifold learning method, called semisupervised sparse multi-manifold embedding (S3MME), for dimensionality reduction of hyperspectral image data. S3MME exploits both the labeled and unlabeled data to adaptively find neighbors of each sample from the same manifold by using an optimization program based on sparse representation, and naturall...

متن کامل

A Semi-supervised Method for Multimodal Classification of Consumer Videos

In large databases, the lack of labeled training data leads to major difficulties in classification. Semi-supervised algorithms are employed to suppress this problem. Video databases are the epitome for such a scenario. Fortunately, graph-based methods have shown to form promising platforms for Semi-supervised video classification. Based on multimodal characteristics of video data, different fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Sci. Inf. Syst.

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2009